
From the Heroic to the Logistical

Programming Model Implications
of New Supercomputing Applications

Ian Foster

Computation Institute
Argonne National Laboratory &

The University of Chicago

With thanks to: Miron Livny, Ioan Raicu, Mike
Wilde, Yong Zhao, and many others.

What will we do

with 1+ Exaflops

and 1M+ cores?

3

1) Tackle Bigger and Bigger Problems

Computational
Scientist

as

Hero

4

2) Tackle Increasingly Complex Problems

Computational
Scientist

as

Logistics

Officer

5

“More Complex Problems”

�Use ensemble runs to quantify climate model uncertainty

� Identify potential drug targets by screening a database of

ligand structures against target proteins

�Study economic model sensitivity to key parameters

�Analyze turbulence dataset from multiple perspectives

�Perform numerical optimization to determine optimal

resource assignment in energy problems

�Mine collection of data from advanced light sources

�Construct databases of computed properties of chemical
compounds

�Analyze data from the Large Hadron Collider

�Analyze log data from 100,000-node parallel computations

6

Programming Model Issues

�Massive task parallelism

�Massive data parallelism

� Integrating black box applications

�Complex task dependencies (task graphs)

�Failure, and other execution management issues

�Data management: input, intermediate, output

�Dynamic task graphs

�Dynamic data access involving large amounts of data

�Long-running computations

�Documenting provenance of data products

7

Problem Types

Number of tasks

Input

data
size

1 1K 1M

Hi

Med

Lo

Heroic
MPI

tasks

Data

analysis,
mining

Many loosely coupled tasks

Much data and

complex tasks

8

An Incomplete and Simplistic View of
Programming Models and Tools

Many Tasks
DAGMan+Pegasus

Karajan+Swift

Much Data
MapReduce/Hadoop

Dryad

Complex Tasks, Much Data
Dryad, Pig, Sawzall

Swift+Falkon

Single task, modest data
MPI, etc., etc., etc.

9

Image courtesy Pat
Behling and Yun
Liu, UW Madison

NCAR computer + grad student

160 ensemble members in 75 days

TeraGrid + “Virtual Data System”

250 ensemble members in 4 days

Many Tasks

Climate
Ensemble
Simulations
(Using FOAM,
2005)

10

Many Many Tasks:
Identifying Potential Drug Targets

2M+ ligandsProtein x

target(s)

(Mike Kubal, Benoit Roux, and others)

11

start

report

DOCK6
Receptor

(1 per protein:
defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script
parameters

(defines flexible
residues,
#MDsteps)

Amber Score:
1. AmberizeLigand
3. AmberizeComplex
5. RunNABScript

end

BuildNABScript

NAB
Script

NAB
Script

Template

Amber prep:
2. AmberizeReceptor
4. perl: gen nabscript

FRED
Receptor

(1 per protein:
defines pocket

to bind to)

Manually prep
DOCK6 rec file

Manually prep
FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

4 million tasks

500K cpu-hrs

Select best ~5KSelect best ~5K

12

DOCK on SiCortex

�CPU cores: 5760

�Tasks: 92160

�Elapsed time: 12821 sec

�Compute time: 1.94 CPU years

�Average task time: 660.3 sec

(does not
include ~800

sec to stage
input data)

Ioan Raicu,

Zhao Zhang

13

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 180 360 540 720 900 1080 1260 1440

Time (sec)

C
P

U
 C

o
re

s

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 180 360 540 720 900 1080 1260 1440

M
ic

ro
-T

a
s

k
s

Idle CPUs
Busy CPUs
Wait Queue Length
Completed Micro-Tasks

MARS Economic Model
Parameter Study

� 2,048 BG/P CPU cores

�Tasks: 49,152

�Micro-tasks: 7,077,888

�Elapsed time: 1,601 secs

�CPU Hours: 894

Mike Wilde, Zhao Zhang

14

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

15

0

500

1000

1500

2000

2500

3000

3500

m
P

ro
je

ct

m
D

iff
/F

it
m

B
ac

kg
ro

un
d

m
A

dd
(s

ub
)

m
A

dd

to
ta

l

T
im

e
 (

s
)

GRAM/Clustering

MPI

Falkon

Montage in MPI
and Swift

(Yong Zhao, Ioan Raicu, U.Chicago)

�MPI: ~950 lines of C for one stage

�Pegasus: ~1200 lines of C + tools to

generate DAG for specific dataset

�SwiftScript: ~92 lines for any dataset

16

MapReduce/Hadoop

Client

I/O

Namenode

Metadata (Name, replicas, …):
/home/sameerp/foo, 3, …

/home/sameerp/docs, 4, …

Client

Datanodes

Rack 1 Rack 2

Metadata
ops

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB

Data Size

T
im

e
 (

s
e

c
)

Swift+PBS

Hadoop

Hadoop DFS Architecture

ALCF: 80 TB memory,

8 PB disk,
78 GB/s I/O bandwidth

Soner Balkir, Jing Tie, Quan Pham

17

0

0.5

1

1.5

2

2.5

0 20000 40000 60000 80000 100000 120000 140000

Number of Application Tasks

L
a

te
n

c
y

 (
s

e
c

s
)

1-deep (VN Mode)

2-deep (VN Mode)

3-deep (VN Mode)

131,072
processes

Extreme Scale Debugging:
Stack Trace Sampling Tool (STAT)

Cost per sample on BlueGene/L

Bart Miller, Wisconsin

18

Summary

�Peta- and exa-scale computers enable us to tackle new
types of problems at far greater scales than before

– Parameter studies, ensembles, interactive data
analysis, “workflows” of various kinds

– Potentially an important source of new applications

�Such apps frequently stress petascale hardware and

software in interesting ways

�New programming models and tools are required

– Mixed task and data parallelism, management of many

tasks, complex data management, failure, …

– Tools for such problems (DAGman, Swift, Hadoop, …)

exist but need refinement

� Interesting connections to distributed systems community

More info: www.ci.uchicago.edu/swift

19

Amiga Mars – Swift+Falkon

� 1024 Tasks (147456 micro-tasks)

� 256 CPU cores

